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Abstract: A random sample size version of the central limit theorem is obtained for a general class of symmetric statistics 

based on uniform spacings. An important application to goodness of fit test for a Poisson process is discussed. 
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1. Introduction 

Let Xi,. . . , X,_, be the order statistics from a uniform distribution on [0, l] and D, = X, - X,_1, 
i=l,2 ,..., n, be the uniform spacings, where X0 = 0 and X, = 1. Statistics of the form C:=, h(nD,) are of 
interest in goodness of fit problems, where h is a real valued function defined on (0, cc). A general method 
available for proving limit theorems for functions of spacings which uses a conditional approach, was 
introduced by LeCam (1958). See also Pyke (1965) and Rao and Sethuraman (1975). 

Pyke (1972, p. 419) poses the following “striking” open question. Let {N(t): t > 0} be a positive 
integer-valued process for which N( t)/t 5 1 as t + co. If V,, a spacings statistic, converges in distribution 
as n tends to infinity, does the same weak limit hold for VNcIj as t - co? The main theorem in this paper 
solves the above problem for a large class of statistics V,. 

Random sample size versions of limit theorems have previously been obtained for example, for sums, 
maxima and empirical processes of independent, identically distributed random variables; but nothing has 
been obtained for similar functions based on uniform spacings which happen to be exchangeable random 
variables. 

Section 2 discusses the main theorem while an important application, a goodness of fit test for a Poisson 
process is discussed in Section 3. 

2. The main theorem 

Let Z,, Z,,..., be an independent, identically distributed sequence of exponential random variables with 
mean one and 2, = n-‘(Z, + Z, + . . . + Z,,). Then it is well known (see Pyke, 1965) that 

(nD,,..., nQ, > - ( Z,/% , -G/%, . . . , G/F,, ) (1) 

where - means that the quantities on either side have the same distribution. We use this crucial fact to 
establish the following theorem. 
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Theorem 1. Assume that 
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(A) (i) h is differentiable in (0, co) and either h’ is bounded on any closed interval in (0, co) and 
monotone in the neighborhood of 0 and 00, or h’ is bounded on (0, co); 

(ii) /F h2(x) eKx dx < cc; 
(iii) there exists an a < 1 such that Jo” (xh’(~))~ eeax dx < cc; 

(B) {N(t): t > 0} is a positive integer-valuedprocess such that N(t)/t -% 1 as t -+ 00. 
Let 

n 

V,=~~~~[h(n4)-~h(Z,)I. (2) 

If (A) and (B) hold, then VNctj converges in distribution to a normal random variable V with mean zero and 

variance a 2 = [Var(h(Z,)) - Cov(h(Z,), Z,)]. 

All the standard examples of h ( .) including h(x) = x”, (r > - i), h(x) = log x, h(x) = x log x satisfy 
our assumption (A). The proof of the above theorem depends on the corresponding result for V, (for 
non-random sample size n) and a theorem of Doeblin (1938) and Anscombe (1952). We now state the 
result for non-random sample size. 

Theorem 2. Under the assumption (A) of Theorem 1, V, 3 N(0, a’) where a2 = Var( h( Z,)) - 

Cov’(h(Z,), Z,). 0 

A proof of this result may be obtained for instance, by specializing Theorem 3 of Sethuraman and Rao 
(1969) or Theorem 4.2 of Kuo and Rao (1981) which discusses tests based on higher-order spacings. For 
the Doeblin-Anscombe theorem, the crucial concept is that of uniform continuity in probability of a 
sequence of random variables which we now define. 

Definition 1. Let {Y,,,: k = 1, 2,. . . , n; n = 1, 2,. . . } be a triangular array of random variables. It is said to 
be uniformly negligible in probability (u.n.i.p.) if and only if for every E > 0 there exist a 6 > 0 such that 

P(,<~~~sjYn,kl >e>(~ forall n>l. 
. . 

Definition 2. A sequence { W,: n >, l} of random variables is said to be uniformZy continuous in probability 
(u.c.i.p.) if and only if {Y,,, = Wn+k - W,: k = 1, 2,. . . , n; n = 1, 2,. . . } is u.n.i.p. 

Note that { W,, n 2 l} is u.c.i.p. if it converges to a finite limit with probability one as n + 00. 

Definition 3. Let {Y,,, } be as in Definition 1. It is said to be uniformly bounded in probability (u.b.i.p.) if 
and only if for every E > 0 there exist 6 > 0 and M > 0 such that 

P( Oi~~x~s 1 Y,,, 1 > M) <E for all n > 1. 
. . 

Theorem 3 (Doeblin-Anscombe). Suppose that {Y,, n >, l} is u.c.i.p. Let {N(t), t > 0}, be as in condition 
(B) of Theorem 1 and let M(t) be the integer part oft. Then YNcrj - YMctj -+ 0 in probability as t -+ 00. As a 
consequence if Y, converges in distribution to a random variable Y, then YNcrj does the same as t + 00. 0 

Example 1. If W,, W,, . . . , are i.i.d. random variables with 

K = (S, - nl-L)/(&), n 2 1, is u.c.i.p., where S, = C:=,II$. 
S,): n > l} is u.n.i.p. 
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finite mean p and finite variance a2, then 
Also if p = 0, then {Y,,, = (l/fi)(S,+, - 
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The reader is referred to Woodroofe (1982, p. 10) for the proofs of Theorem 3 as well as the first part of 
the Example 1. The second part of the example follows from the Kolmogorov’s inequality. The following 
two propositions are straightforward. 

Proposition 1. If {Y,,,} and {Z,,,} are u.n.i.p., then {Y,,, + Z,,,} is u.n.i.p. 0 

Proposition 2. 1f { Yn,k } isu.n.i.p. and {W,,,} isu.b.i.p., then {Y,,,. W,,,} isu.n.i.p. 0 

Now we are ready to prove our main theorem. 

Proof of Theorem 1. Let 

Then {V,, n >, l} defined in (2) and {U,, n > l} have the same distribution as a result of representation 
(1). Thus Theorems 2 and 3 would imply our Theorem 1 if {U,: n 2 l} is u.c.i.p., which is what we 
establish below. Now, 

u n+k -Un=ki$ {h(Z./Z.+k)-h(Z./Z,)}+~;~~k {h(Zi/Z,+k)-h(Z~)} 
1 ?I+1 

n+k 

+ + ;=F+l PG) - w-w 
=A,,, + Bn,k + Cn,k, say. 

Since {C,,,} is u.n.i.p. by Example 1 and condition (A)(ii), we need only to prove that { An,k} and { B,,k} 

are also u.n.i.p. because of Proposition 1. By assumption (A)(i) and the mean value theorem, 

A n,k = 
Jqz, _ z,,k)l k hyink)zl) 

n i=l zn+kz ” 

where Sink lies between Z/z,,+, and Z/z,. It can be easily checked that 

6( 2, - z,,,) = -&~~,z;-l)--&~~k (z;-1). 
r-l r=n+l 

(4 

(5) 

Since for k Q n8, k/(n + k) < S and (l/fi)Xy=, (Z, - 1) is stochastically bounded, the first term on the 
right hand side of (5) is u.n.i.p. Also since &/(n + k) 6 l/h, the Kolmogorov inequality implies that 
the second term on the right hand side of (5) is u.n.i.p. From Proposition 1, &(z, - z,+k) is u.n.i.p. Also 
from the remark after Definition 2, (z .+kz,,-l is u.b.i.p. Thus if we show that (l/n)C:=, h’(&)Zi is 
u.b.i.p, then Propositions 1 and 2 would imply that { A,,k} is u.n.i.p. Note that if maxe d k G ns 1 Z,,, - 11 
-c 13, then 

Z,/(I + 8) =G 5 rnk d Z/(1 - r3) for every i = 1, 2,.. ., n and k < nS. (6) 

Assumption (A)(i) implies that there exist 0 < a < b < co and M > 0 such that either 1 h’(x) 1 < A4 for 
x E [a, b] and I h’(x) I is monotone in (0, a) and (b, co), or I h’(x) I Q A4 for every x in (0, cc). Thus (6) 
implies that 

(7) 
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for every i = 1, 2,. . . , n and for all k 6 n& Let (Y be as in (A)(iii). Then 

Elh’(Z,/a)Z,I=n2/umlh’(y)Iye-.Ydy<co 

and similarly, 

October 1989 

~ X ,~ Zj+ ~ ,~ lh’(Z;/(2_cu))Z,I+ ~ ,~ Ih’(Zi/~)Z;l. (8) 
I=1 I=1 1=1 

Consequently, by the law of large numbers, for every E > 0, 34, > 0 such that 

<$E (9) 

for every n. On the other hand, an application of the Chebysev’s inequality gives that for sufficiently small 

6 

for every n. Thus (9) and (10) imply that (l/n)C~,lh’(E,,k)Zi is u.b.i.p. and hence { An,k} is u.n.i.p. as 
noted earlier. 

Applying the mean value theorem once more, we obtain 

B n,k= $ iIik h’(S,nk)( 5 - ‘i) 
n-t1 n+k 

where cjnk is between Z/p,, +k and Zi. Similar to the arguments leading to (8) we can show that if 

max O<k<ndZ,r+k-lI g1-a, then 

+M+n+k 
(YJ;; 

-1/{M+Elh'(Z,/(2-a))Z11+E(h'(Zl/a)Z,I}. (11) 

Note that the first three terms in the right hand side of (11) are u.n.i.p. by the Kolmogorov inequality and 
condition (A)(m). Moreover, 

(12) 
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The first term of the right hand side in (12) is obviously u.n.i.p. and so is the second term by the 
Kolmogorov inequality. Thus the left hand side of (12) is u.n.i.p., which implies that the last term in (11) is 
also u.n.i.p. It follows that Bn,k is u.n.i.p. and the proof is complete. 0 

3. Application and extensions 

Consider a renewal process, a sequence of independent non-negative random variables { Xi, i > l} with 
common distribution function F. For t > 0, let N(t) = max{ k 2 0: X, + X, + . . . +X, G t } denote the 
number of observations observed up to time f. Thus the sample takes the form Xi, X,, . . . , XNcrj and 
t - x, - x, - . . . - X,,,,(,). Of particular interest is the theory of spacings corresponding to the special case 
in which F is the exponential distribution function with mean 1, that is to say, under the null-hypothesis, 
the renewal process is a Poisson process with parameter 1. Consider the sample in the modified form 
t-1x1, t-lx2,. . .) t-lx,(,), 1 - t-y x, + x, + * . . +xj&, so that conditionally, given N(t) = n, the 
sample is equivalent to the uniform spacings from a sample of n independent uniform random variables. 
There are several popular goodness of fit tests based on uniform spacings (see Pyke, 1965). Theorem 1 
permits us to use the asymptotic distribution theory for the non-random sample size case to the above 
described random sample size case. 

An illustrative example. Suppose that a fire station received N(t) = 20 calls in a particular t = 24 hour 
period and we wish to test if these are uniformly distributed over the entire day corresponding to a Poisson 
process or they tend to cluster around some particular time of the day. Suppose the calls are received at the 
following times: 

1.10, 4.30, 6.00, 6.10, 7.00, 8.00, 8.30, 8.45, 9.30, 10.05, 13.00, 14.10, 16.00, 17.50, 

19.30, 21.15, 22.00, 22.15, 23.00, 23.30. 

We compare D,=X/t, i=l,...,N(t) and DN(t)+l=l-t-l(X1+ ... +XNcl)) where the {Xii) are the 
inter-arrival times. From the theory of spacings, we know that (cf. Sethuraman and Rao, 1970) C:_‘,‘((n + 
1)D,)2 is approximately N(2(n + l), 4n) for large enough n (non-random). But from Theorem 1, this 
asymptotic normal distribution can also be used to find the critical values for the random sample size case. 
In this example, Theorem 1 shows that the statistic 

p-.-L 
i 

N(t)+1 

mm c [(N(t)+l)oil’-2(N(t)+l) 
i=l 1 

is approximately a standard normal random variable and we compute the observed q = - 1.120 based on 
the above data. This value is not significant even at level 0.10. Thus we would not reject the hypothesis 
that the calls arrived uniformly in the day. 

Theorem 1 easily extends to the asymptotic distribution theory developed for test statistics based on 
m-step spacings for any finite m. See for instance Kuo and Rao (1981). Whether the extension to random 
sample size, also holds when m depends on n and goes to cc (as in Hall, 1986; Jammalamadaka, Zhou and 
Tiwari, 1986), needs further investigation and possibly additional restrictions on the class of such statistics. 

One might also consider sequential test procedures in which the test statistic is based on spacings. 
Although none have been developed to the knowledge of the authors, Theorem 1 allows one to use the 
large sample distribution theory for spacings, to be applied in such a situation. 
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